Applies an arbitrary function to selected columns of a DTSg
object.
# S3 method for class 'DTSg'
colapply(
x,
fun,
...,
cols = self$cols(class = "numeric")[1L],
resultCols = NULL,
suffix = NULL,
helpers = TRUE,
funby = NULL,
ignoreDST = FALSE,
multiplier = 1L,
funbyHelpers = NULL,
funbyApproach = self$funbyApproach,
clone = getOption("DTSgClone")
)
A DTSg
object (S3 method only).
A function
. Its return value must be of length one.
Further arguments passed on to fun
.
A character vector specifying the columns to apply fun
to.
Another possibility is a character string containing either comma separated
column names, for example, "x,y,z"
, or the start and end column separated
by a colon, for example, "x:z"
.
An optional character vector of the same length as cols
specifying the column names for the return values of fun
. Another
possibility is a character string containing comma separated column names,
for example, "x,y,z"
. Non-existing columns are added and existing columns
are overwritten. Columns are matched element-wise between cols
and
resultCols
.
An optional character string. The return values of fun
are
added as new columns with names consisting of the columns specified in
cols
and this suffix. Existing columns are never overwritten. Only used
when resultCols
is not specified.
A logical specifying if helper data shall be handed over to
fun
. See corresponding section for further information.
One of the temporal aggregation level functions described in
TALFs
or a user defined temporal aggregation level function. Can be
used to apply functions like cumsum
to a certain temporal level. See
corresponding section and examples for further information.
A logical specifying if day saving time shall be ignored
by funby
. See corresponding section for further information.
A positive integerish value “multiplying” the
temporal aggregation level of certain TALFs
. See corresponding section
for further information.
An optional list
with helper data passed on to
funby
. See corresponding section for further information.
A character string specifying the flavour of the applied
temporal aggregation level function. Either "timechange"
, which utilises
timechange::time_floor
, or "base"
, which utilises as.POSIXct
, or
"fasttime"
, which utilises fasttime::fastPOSIXct
, or "RcppCCTZ"
,
which utilises RcppCCTZ::parseDatetime
as the main function for
transforming timestamps.
A logical specifying if the object shall be modified in place or if a deep clone (copy) shall be made beforehand.
Returns a DTSg
object.
In addition to the ...
argument, this method optionally hands over a
list
argument with helper data called .helpers
to fun
. This list
contains the following elements:
.dateTime: A POSIXct
vector containing the .dateTime column.
periodicity: Same as the periodicity
field.
minLag: A difftime
object containing the minimum time difference
between two subsequent timestamps.
maxLag: A difftime
object containing the maximum time difference
between two subsequent timestamps.
User defined temporal aggregation level functions have to return a
POSIXct
vector of the same length as the time series and accept two
arguments: a POSIXct
vector as its first and a list
with helper data
as its second. The default elements of this list
are as follows:
timezone: Same as the timezone
field.
ignoreDST: Same as the ignoreDST
argument.
periodicity: Same as the periodicity
field.
na.status: Same as the na.status
field.
multiplier: Same as the multiplier
argument.
funbyApproach: Same as the funbyApproach
argument.
Any additional element specified in the funbyHelpers
argument is appended
to the end of the default list
. In case funbyHelpers
contains an
ignoreDST, multiplier or funbyApproach element, it takes precedence over
the respective method argument. timezone, periodicity and na.status
elements are rejected, as they are always taken directly from the object.
The temporal aggregation level of certain TALFs
can be adjusted with the
help of the multiplier
argument. A multiplier
of 10
, for example, makes
byY_____
aggregate to decades instead of years. Another example
is a multiplier
of 6
provided to by_m____
. The function
then aggregates all months of all first and all months of all second half
years instead of all months of all years separately. This feature is
supported by the following TALFs
of the package:
ignoreDST
tells a temporal aggregation level function if it is supposed to
ignore day saving time while transforming the timestamps. This can be a
desired feature for time series strictly following the position of the sun
such as hydrological time series. Doing so ensures that diurnal variations
are preserved by all means and all intervals are of the “correct”
length, however, a possible limitation might be that the day saving time
shift is invariably assumed to be one hour long. This feature requires that
the periodicity of the time series has been recognised and is supported by
the following TALFs
of the package:
# new DTSg object
x <- DTSg$new(values = flow)
# linear interpolation of missing values
## R6 method
x$colapply(fun = interpolateLinear)$print()
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.540
#> 2: 2007-01-02 9.285
#> 3: 2007-01-03 8.940
#> 4: 2007-01-04 8.745
#> 5: 2007-01-05 8.490
#> ---
#> 2188: 2012-12-27 26.685
#> 2189: 2012-12-28 28.050
#> 2190: 2012-12-29 23.580
#> 2191: 2012-12-30 18.840
#> 2192: 2012-12-31 17.250
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
## S3 method
print(colapply(x = x, fun = interpolateLinear))
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.540
#> 2: 2007-01-02 9.285
#> 3: 2007-01-03 8.940
#> 4: 2007-01-04 8.745
#> 5: 2007-01-05 8.490
#> ---
#> 2188: 2012-12-27 26.685
#> 2189: 2012-12-28 28.050
#> 2190: 2012-12-29 23.580
#> 2191: 2012-12-30 18.840
#> 2192: 2012-12-31 17.250
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
# daily cumulative sums per month
## R6 method
x$colapply(
fun = cumsum,
helpers = FALSE,
funby = byYm____
)$print()
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.540
#> 2: 2007-01-02 18.825
#> 3: 2007-01-03 27.765
#> 4: 2007-01-04 36.510
#> 5: 2007-01-05 45.000
#> ---
#> 2188: 2012-12-27 376.185
#> 2189: 2012-12-28 404.235
#> 2190: 2012-12-29 427.815
#> 2191: 2012-12-30 446.655
#> 2192: 2012-12-31 463.905
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
## S3 method
print(colapply(
x = x,
fun = cumsum,
helpers = FALSE,
funby = byYm____
))
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.540
#> 2: 2007-01-02 18.825
#> 3: 2007-01-03 27.765
#> 4: 2007-01-04 36.510
#> 5: 2007-01-05 45.000
#> ---
#> 2188: 2012-12-27 376.185
#> 2189: 2012-12-28 404.235
#> 2190: 2012-12-29 427.815
#> 2191: 2012-12-30 446.655
#> 2192: 2012-12-31 463.905
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
# calculate moving averages with the help of 'runner' (all four given
# approaches provide the same result with explicitly missing timestamps)
if (requireNamespace("runner", quietly = TRUE) &&
packageVersion("runner") >= package_version("0.3.5")) {
wrapper <- function(..., .helpers) {
runner::runner(..., idx = .helpers[[".dateTime"]])
}
## R6 method
x$colapply(
fun = runner::runner,
f = mean,
k = 5,
lag = -2
)$print()
x$colapply(
fun = wrapper,
f = mean,
k = "5 days",
lag = "-2 days"
)$print()
x$colapply(
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x$getCol(col = ".dateTime")
)$print()
x$colapply(
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x[".dateTime"]
)$print()
## S3 method
print(colapply(
x = x,
fun = runner::runner,
f = mean,
k = 5,
lag = -2
))
print(colapply(
x = x,
fun = wrapper,
f = mean,
k = "5 days",
lag = "-2 days"
))
print(colapply(
x = x,
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = getCol(x = x, col = ".dateTime")
))
print(colapply(
x = x,
fun = runner::runner,
f = mean,
k = "5 days",
lag = "-2 days",
idx = x[".dateTime"]
))
}
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.2550
#> 2: 2007-01-02 9.1275
#> 3: 2007-01-03 9.0000
#> 4: 2007-01-04 8.7720
#> 5: 2007-01-05 8.5710
#> ---
#> 2188: 2012-12-27 28.9860
#> 2189: 2012-12-28 25.3200
#> 2190: 2012-12-29 22.8810
#> 2191: 2012-12-30 21.9300
#> 2192: 2012-12-31 19.8900
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.2550
#> 2: 2007-01-02 9.1275
#> 3: 2007-01-03 9.0000
#> 4: 2007-01-04 8.7720
#> 5: 2007-01-05 8.5710
#> ---
#> 2188: 2012-12-27 28.9860
#> 2189: 2012-12-28 25.3200
#> 2190: 2012-12-29 22.8810
#> 2191: 2012-12-30 21.9300
#> 2192: 2012-12-31 19.8900
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.2550
#> 2: 2007-01-02 9.1275
#> 3: 2007-01-03 9.0000
#> 4: 2007-01-04 8.7720
#> 5: 2007-01-05 8.5710
#> ---
#> 2188: 2012-12-27 28.9860
#> 2189: 2012-12-28 25.3200
#> 2190: 2012-12-29 22.8810
#> 2191: 2012-12-30 21.9300
#> 2192: 2012-12-31 19.8900
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.2550
#> 2: 2007-01-02 9.1275
#> 3: 2007-01-03 9.0000
#> 4: 2007-01-04 8.7720
#> 5: 2007-01-05 8.5710
#> ---
#> 2188: 2012-12-27 28.9860
#> 2189: 2012-12-28 25.3200
#> 2190: 2012-12-29 22.8810
#> 2191: 2012-12-30 21.9300
#> 2192: 2012-12-31 19.8900
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 9.2550
#> 2: 2007-01-02 9.1275
#> 3: 2007-01-03 9.0000
#> 4: 2007-01-04 8.7720
#> 5: 2007-01-05 8.5710
#> ---
#> 2188: 2012-12-27 28.9860
#> 2189: 2012-12-28 25.3200
#> 2190: 2012-12-29 22.8810
#> 2191: 2012-12-30 21.9300
#> 2192: 2012-12-31 19.8900
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Error in eval(call): object 'wrapper' not found
# calculate rolling correlations somewhat inefficiently with the help of
# 'runner'
if (requireNamespace("runner", quietly = TRUE) &&
packageVersion("runner") >= package_version("0.3.8")) {
wrapper <- function(x, y, f, k, lag, ...) {
runner::runner(
cbind(x, y),
f = function(x) f(x[, 1], x[, 2]),
k = k,
lag = lag
)
}
## R6 method
x$colapply(
fun = wrapper,
y = x["flow"] + rnorm(length(x["flow"])),
f = cor,
k = 5,
lag = -2
)$print()
## S3 method
print(colapply(
x = x,
fun = wrapper,
y = x["flow"] + rnorm(length(x["flow"])),
f = cor,
k = 5,
lag = -2
))
}
#> Values:
#> .dateTime flow
#> <POSc> <num>
#> 1: 2007-01-01 0.60913948
#> 2: 2007-01-02 0.21808830
#> 3: 2007-01-03 -0.07628021
#> 4: 2007-01-04 -0.20484280
#> 5: 2007-01-05 -0.20798329
#> ---
#> 2188: 2012-12-27 0.98269980
#> 2189: 2012-12-28 0.99617465
#> 2190: 2012-12-29 0.99277104
#> 2191: 2012-12-30 0.99215890
#> 2192: 2012-12-31 0.98580756
#>
#> Aggregated: FALSE
#> Regular: TRUE
#> Periodicity: Time difference of 1 days
#> Missing values: explicit
#> Time zone: UTC
#> Timestamps: 2192
#> Error in eval(call): object 'wrapper' not found